If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+1089=1296
We move all terms to the left:
x^2+1089-(1296)=0
We add all the numbers together, and all the variables
x^2-207=0
a = 1; b = 0; c = -207;
Δ = b2-4ac
Δ = 02-4·1·(-207)
Δ = 828
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{828}=\sqrt{36*23}=\sqrt{36}*\sqrt{23}=6\sqrt{23}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{23}}{2*1}=\frac{0-6\sqrt{23}}{2} =-\frac{6\sqrt{23}}{2} =-3\sqrt{23} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{23}}{2*1}=\frac{0+6\sqrt{23}}{2} =\frac{6\sqrt{23}}{2} =3\sqrt{23} $
| 2q+5q-6q=13 | | k-4+ 5=8 | | (2x+7)(x)=60 | | 12.26+w=39 | | -99-2x=48 | | 4k+2k+k+k-6k=20 | | (3r+1)=(7) | | 4k+2k+k+k-6=20 | | Y=x^-24 | | 14n+42=52n | | 5x=23x | | 7=1.6x+5.4 | | 5n-7n=-18 | | 26=30p | | 9x-2x-2x-x=16 | | 27=3t-9 | | 2j+4j-j=20 | | z/3+7=10 | | 4−4j=-5j−6 | | 5x+15/3x.9x²/2x+6=15x/2 | | 4r=5r+8 | | 4c-13=-21 | | 3x+4(15)=90 | | 43=14+.20m | | 2u+12=26 | | 7x^2-122x-2352=0 | | y=200(.7)^ | | -13q=19−14q | | -8h−1=-9h−10+4h | | -8-(-s)-(-s)+7=14 | | 4(1x+4)+2x=52 | | -9(v-3)=-4v-18 |